首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   5篇
公路运输   43篇
综合类   32篇
水路运输   4篇
铁路运输   7篇
综合运输   64篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   9篇
  2015年   11篇
  2014年   23篇
  2013年   8篇
  2012年   11篇
  2011年   8篇
  2010年   5篇
  2009年   10篇
  2008年   6篇
  2007年   11篇
  2006年   8篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有150条查询结果,搜索用时 345 毫秒
1.
轨道电路是用于检测列车是否占用轨道区段的设备,正确判断其分路状态对行车安全十分重要。当出现轨面生锈或积污等问题时,由于分路电阻过高导致轨道电路分路不良,这将影响分路状态的可靠判定,轨道区段占用检测方法仍存在瓶颈。对此,利用光纤光栅(Fiber Bragg Grating, FBG)压力传感技术的优势,结合轨道电路的工作原理和轨道动力学分析结果,设计轨道占用检测的系统结构;监测FBG的中心波长漂移量,统计列车进出轨道区段的轮对轴数,通过轴数比较解决轨道电路分路不良时的轨道区段占用检测问题。对光纤Bragg光栅纵向应力特性进行仿真实验,结果表明:FBG的中心波长漂移量和纵向应力的改变成正比,即和钢轨受力形变所产生的弯矩变化成正比,这种应力特性可有效应用于轨道区段的检测问题。  相似文献   
2.
Pedestrians adjust both speed and stride length when they navigate difficult situations such as tight corners or dense crowds. They try to avoid collisions and to preserve their personal space. State-of-the-art pedestrian motion models automatically reduce speed in dense crowds simply because there is no space where the pedestrians could go. The stride length and its correct adaptation, however, are rarely considered. This leads to artefacts that impact macroscopic observation parameters such as densities in front of bottlenecks and, through this, flow. Hence modelling stride adaptation is important to increase the predictive power of pedestrian models. To achieve this we reformulate the problem as an optimisation problem on a disk around the pedestrian. Each pedestrian seeks the position that is most attractive in a sense of balanced goals between the search for targets, the need for individual space and the need to keep a distance from obstacles. The need for space is modelled according to findings from psychology defining zones around a person that, when invaded, cause unease. The result is a fully automatic adjustment that allows calibration through meaningful social parameters and that gives visually natural results with an excellent fit to measured experimental data.  相似文献   
3.
In this paper, we report on the construction of a new framework for simulating mixed traffic consisting of cars, trams, and pedestrians that can be used to support discussions about road management, signal control, and public transit. Specifically, a layered road structure that was designed for car traffic simulations was extended to interact with an existing one-dimensional (1D) car-following model and a two-dimensional (2D) discrete choice model for pedestrians. The car model, pedestrian model, and interaction rules implemented in the proposed framework were verified through simulations involving simple road environments. The resulting simulated values were in near agreement with the empirical data. We then used the proposed framework to assess the impact of a tramway extension plan for a real city. The simulation results showed that the impact of the proposed tramway on existing car traffic would not be serious, and by extension, implied that the proposed framework could help stakeholders decide on expansion scenarios that are satisfactory to both tram users and private car owners.  相似文献   
4.
Climate change (CC) potentially affects people travel behaviour, due to extreme weather conditions. This is particularly true for pedestrians, that are more exposed to weather conditions. Introducing the effect of this change in transport modelling allows to analyse and plan walking networks taking into consideration the climatic variable. The aim of this work is to develop a tool that can support planning and design of walking networks, by assessing the effects of actions oriented to increase resilience with respect to extreme weather conditions (CC adaptation).An integrated approach is used, thus combining transport and land-use planning concepts with elements of outdoor thermal comfort and network accessibility. Walking networks are analysed through centrality indexes, including thermal comfort aspects into a general cost function of links and weighted nodes. The method has been applied to the walking network inside the Campus of the University of Catania (Italy), which includes different functions and where pedestrian paths are barely used by people. Results confirm that this tool is sensitive to the variables representing weather conditions and it can measure the influence of CC adaptation measures (e.g. vegetation) on walking attitude and on the performance of the walking network.  相似文献   
5.
The High Line is an elevated public park in New York City, transformed from an unused freight rail line. Pedestrians walking through Manhattan’s West Side can walk either on the High Line or on a footpath below. Using Manhattan as a laboratory, this paper offers a combined assessment of noise and particulate matter pollution for its pedestrians. Noise and PM2.5 levels were recorded simultaneously for two cases (i) pedestrians walking on a footpath alongside road traffic and (ii) pedestrians walking on the elevated High Line. Testing took places over three days in autumn 2014. Results were analysed to investigate if pedestrians using the High Line would have a lower pollution exposure to those using the footpath below. Results showed statistically significant differences between the upper and lower levels in exposure to both pollution types. In order to quantify the overall impact, results are expressed through a combined air–noise pollution index. This index indicates that the average reduction in PM2.5 and noise pollution along the High Line compared to the footpath below is approximately 37%.  相似文献   
6.
In most metropolitan areas, an emergency evacuation may require a potentially large number of pedestrians to walk some distance to access their passenger cars or resort to transit systems. In this process, the massive number of pedestrians may place a tremendous burden on vehicles in the roadway network, especially at critical intersections. Thus, the effective road enforcement of the vehicle and pedestrian flows and the proper coordination between these two flows at critical intersections during a multimodal evacuation process is a critical issue in evacuation planning. This article presents an integrated linear model for the design of optimized flow plans for massive mixed pedestrian–vehicle flows within an evacuation zone. The optimized flow can also be used to generate signal timing plans at critical intersections. In addition, the linear nature of the model can circumvent the computational burden to apply in large-scale networks. An illustrating example of the evacuation around the M&T Bank Stadium in downtown Baltimore, MD, is presented and used to demonstrate the model's capability to address the complex interactions between vehicle and pedestrian flows within an evacuation zone. Results of simulation experiments verify the applicability of our model to a real-world scenario and further indicate that accounting for such conflicting movements will yield more reliable estimation of an evacuation's required clearance time.  相似文献   
7.
We present a method of predicting pedestrian route choice behavior and physical congestion during the evacuation of indoor areas with internal obstacles. Under the proposed method, a network is first constructed by discretizing the space into regular hexagonal cells and giving these cells potentials before a modified cell transmission model is employed to predict the evolution of pedestrian flow in the network over time and space. Several properties of this cell transmission model are explored. The method can be used to predict the evolution of pedestrian flow over time and space in indoor areas with internal obstacles and to investigate the collection, spillback, and dissipation behavior of pedestrians passing through a bottleneck. The cell transmission model is further extended to imitate the movements of multiple flows of pedestrians with different destinations. An algorithm based on generalized cell potential is also developed to assign the pedestrian flow.  相似文献   
8.
Collecting microscopic pedestrian behavior and characteristics data is important for optimizing the design of pedestrian facilities for safety, efficiency, and comfortability. This paper provides a framework for the automated classification of pedestrian attributes such as age and gender based on information extracted from their walking gait behavior. The framework extends earlier work on the automated analysis of gait parameters to include analysis of the gait acceleration data which can enable the quantification of the variability, rhythmic pattern and stability of pedestrian’s gait. In this framework, computer vision techniques are used for the automatic detection and tracking of pedestrians in an open environment resulting in pedestrian trajectories and the speed and acceleration dynamic profiles. A collection of gait features are then derived from those dynamic profiles and used for the classification of pedestrian attributes. The gait features include conventional gait parameters such as gait length and frequency and dynamic parameters related to gait variations and stability measures. Two different techniques are used for the classification: a supervised k-Nearest Neighbors (k-NN) algorithm and a newly developed semi-supervised spectral clustering. The classification framework is demonstrated with two case studies from Vancouver, British Columbia and Oakland, California. The results show the superiority of features sets including gait variations and stability measures over features relying only on conventional gait parameters. For gender, correct classification rates (CCR) of 80% and 94% were achieved for the Vancouver and Oakland case studies, respectively. The classification accuracy for gender was higher in the Oakland case which only considered pedestrians walking alone. Pedestrian age classification resulted in a CCR of 90% for the Oakland case study.  相似文献   
9.
根据行人-汽车碰撞中对行人腿部碰撞保护相关技术法规的要求,针对行人下肢的损伤机理,分析了腿部可变形膝关节部件的设计方法。通过力学模型的建立和分析,提出了确定膝关节部件结构类型、尺寸和材料的力学计算方法以及部件标定试验验证方案。经算例和部件的标定试验验证,该设计方法满足EEVCWG10的弯曲部分技术要求,可变形膝关节设计原理和分析方法可以为其他行人腿部模块技术规范中的部件设计提供参考。  相似文献   
10.
相容性车身及行人假人   总被引:1,自引:0,他引:1  
近年来,随着各国正面碰撞试验法规的实施,汽车的碰撞安全性能有了显著的提高。然而,由于在碰撞中存在两车辆的“质量”、“刚度”和“结构”并不相同的情况,当大车与小车发生正面碰撞时,往往会导致小车乘员舱产生比较大的变形,因此提高小车的自我保护性能就显得尤为重要。为了达到正面碰撞中两车的相容性,本文介绍了一种新型车身结构在实车中的应用情况,以及其提升车辆安全性能的作用,并简要介绍了本田汽车公司在行人保护方面所做的研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号